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Abstract The indefinite nature of the mixed finite element formulation of the Navier-Stokes
equations is treated by segregation of the variables. The segregation algorithm assembles the
coefficients which correspond to the velocity variables in the upper part of the equation matrix and
the coefficients which corresponds to the pressure variables in the lower part of the equation
matrix. During the incomplete; elimination of the velocity matrix, fill-in will occur in the pressure
matrix, hence, divisions with zero are avoided. The fill-in rule applied here is related to the location
of the node in the finite element mesh, rather than the magnitude of the fill-in or the magnitude of
the coefficient at the location of the fill-in. Different orders of fill-in are explored for ILU
preconditioning of the mixed finite element formulation of the Navier-Stokes equations in two
dimensions.

1. Introduction
The use of direct equation solvers for large scale finite element simulation has
been limited owing to the requirement of large memory storage capacity.
Consequently, the efforts have been directed towards the development of fast
iterative equation solvers requiring less memory storage and CPU time
(Meijerink and van der Vorst, 1977; Sonneveld, 1987). In some algorithms,
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equation matrix need not be stored at all as in element-by-element formulations
(Wille, 1986, 1987). However, iterative schemes may not be robust, and good
preconditioners may be needed.

Hence, the preconditioning of iterative solvers has been the subject of
extensive investigation in recent times (Carey et al., 1989; Dahl and Wille, 1992;
van der Vorst, 1992; Young and Yea, 1980). The most popular preconditioner
has been incomplete Gaussian factorization (ILU). As demonstrated in our
numerical experiments, the efficiency of ILU preconditioning for a finite
element equation is strongly related to the node numbering of the finite
element mesh. There are several efficient ways of node numbering. The
nodes may be numbered from the boundary of the element mesh towards
the center of the mesh, from one side of the mesh to the opposite one or from the
center of the mesh towards the boundary, to minimize bandwidth or
frontwidth, in accordance with nested dissection criteria. In the present
context, the influence of ordering on fill-in for ILU preconditioning is of
particular interest.

In the solution of algebraic equations, the amount of fill-in is governed by a
predefined limiting value for the coefficients of the magnitude of the fill-in. The
greater the magnitude of this limit is set, the higher order of fill-in is accepted.
This fill-in rule is not very suitable in practice, especially when the system of
finite element equations is indefinite as, for example, the Navier-Stokes system.

In the present work, a fill-in rule based on the location of the nodes in the
element mesh is developed. First-order fill-in is defined as follows: if nodes
belong to the same element, fill-in is confined to the corresponding locations in
the equation matrix. If nodes belong to an element or adjacent elements,
second-order fill-in is accomplished.

The finite element equations for incompressible flow with mixed
interpolation are indefinite in nature. Therefore, care has to be taken when
assembling the equation matrix to avoid division by zero during the
factorization of the equation matrix. In the present algorithm, the segregation
of variable method is applied to the Navier-Stokes system. The pressure
equations are assembled in the last diagonal block of the matrix. During the
elimination process, fill-in will occur on the diagonal and in other locations,
which were initially zero due to indefiniteness.

In the present work the fill-in algorithm is implemented and numerical
experiments are performed for an ILU preconditioned conjugate gradient
algorithm for solving the global system of equations. The experiments are
performed for increasing the order of fill-in and various Reynolds numbers
with meshes are adapted to the solution (Greaves and Borthwick, 1998, 1999;
Kallinderis, 1992; Wille, 1992, 1996).

Dahl and Wille (1992) compared the present fill-in rule with the first-order
fill-in described in the work by Carey et al. (1989), where a small number was
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added to the zero diagonal entries. This comparison was favorable with respect
to the present fill-in algorithm.

The effect of adapted meshes for the the first-order fill-in algorithm in
solving the Navier-Stokes equations has been studied by Wille (1992). The
adapted mesh algorithm has also been applied to other problems, such as
surface flow in the North-Sea (Wille, 1998).

2. The equations
As a model problem, we consider the stationary Navier-Stokes system in two
dimensions

ru · 7u2 m72uþ 7p ¼ f in V , R 2 ð1Þ

27 ·u ¼ 0 in V ð2Þ

with homogeneous Dirichlet boundary conditions

u ¼ 0 on G ¼ ›V ð3Þ

where u is the velocity vector, p the pressure, r the density and m the viscosity
coefficient.

For small juj this can be approximated by

2m72uþ 7p ¼ f ð4Þ

27 ·u ¼ 0 ð5Þ

as a particular case of the stationary Navier-Stokes system without convection.
A variational formulation of the Navier-Stokes system: find the velocity

u [ U ¼ H 1
0ðVÞ £ H 1

0ðVÞ and the pressure p [ Q ¼ L2ðVÞ=R such that

~aðu;u;vÞ þ bð p;vÞ ¼ f ðvÞ ;v [ U ð6Þ

bðq;uÞ ¼ 0 ;q [ Q ð7Þ

with

aðu;u; vÞ ¼

Z
V

½u ·7u ·vþ m7u ·7v2 p7 ·v� dV ð8Þ

bðq;uÞ ¼ 2

Z
V

7 ·uq dV ð9Þ
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f ðvÞ ¼

Z
V

f ·v dV ð10Þ

Let us consider the standard mixed finite element formulation with both
velocities and pressure approximated using C 0 Lagrangian interpolations with
quadratic basis functions for velocities and linear basis functions for pressure
on triangles (Taylor and Hood, 1973). Denoting Uh , U and Qh , Q; as the
corresponding C 0 Lagragian finite element spaces for velocity and pressure
fields, the Galerkin approximation for the Navier-Stokes equation system
becomes

aðuh;uh;vhÞ þ bðph;vhÞ ¼ f ðvhÞ ;vh [ Uh ð11Þ

bðqh;uhÞ ¼ 0 ;qh [ Qh ð12Þ

The Stokes approximation is recovered by omitting the convective term in
equation (11), yielding

aðuh; vhÞ þ bð p;vhÞ ¼ f ðvhÞ ;vh [ Uh ð13Þ

bðqh;uhÞ ¼ 0 ;qh [ Qh ð14Þ

with

aðu;vÞ ¼

Z
V

½m7u ·7v2 p7 ·v� dV ð15Þ

3. Pivoting of nodes
A typical mesh and node ordering as delivered by a standard mesh generator is
shown in Figure 1 (left). This mesh does not have an optimal node ordering and

Figure 1.
Node ordering given by a
standard generator, for
example, oct tree mesh
generators and Delauney
triangulation (left). The
node ordering after
sorting the nodes with
respect to distance to a
point far away in the
y-direction (right)
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results in a less efficient ILU preconditioner (Dahl and Wille, 1992). The node
ordering using the numbering strategy used in the work of Wille and Loula
(2002), is shown in Figure 1 (right). The nodes in this mesh are sorted with
respect to the distance to a point far away in the y-direction. Although not
proved theoretically, numerous experiments have shown that this is one of the
best node ordering schemes to obtain an efficient preconditioner (Wille and
Loula, 2002). The ILU factorization in this order ensures that contributions of
fill-in are propagated progressively from one end of the mesh to the other.

4. Segregation of variables
The segregation of variables method has been described earlier by Dahl and
Willie (1992) and Willie and Loula (2002). Applying this method to the
indefinite systems of finite element equations, the variables associated with the
zero diagonal entries are assembled as the last unknowns in the equation
system. Thus, when using a direct Gaussian solver or an incomplete Gaussian
factorization, the elimination of the variables prior to the indefinite variables
will cause fill-in at the pivot locations in the matrix which were initially zero
due to indefiniteness. In the viscous flow problem, the absence of pressure in
the continuity equation implies zero diagonal block in the assembled system.

The block structure of the assembled finite element matrix under this
ordering of degrees of freedom is shown in Figure 2. The coefficients for the
velocities are assembled in matrix A. The coupling between the velocities and
pressures appear in matrix B and the continuity equation is assembled in BT.
The matrix for the pressure degrees of freedom P is initially zero. However,
during the factorization of the velocity matrix, A, fill-in will appear in the
pressure matrix P. When the factorization reaches P, the fill-in evolving from
the factorization of A, will prevent division by zero in the factorization of P.

Figure 2.
Block partitioning of the

matrix with the
segregation of variables

technique
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5. Fill-in rules
The fill-in rule for ILU preconditioners is accepted at locations in the equation
matrix where the magnitude of the coefficients is above a predefined limit. The
order of fill-in is determined by the magnitude of this limit. However, this fill-in
rule is not well suited for indefinite finite element equations. Considering the
Navier-Stokes equations with mixed interpolation, this fill-in rule would never
allow fill-in at the location corresponding to the zeros due to the absence of
pressure in the continuity equation. A new fill-in rule for finite element
equations has to be considered. The fill-in rules for finite elements considered in
the present investigation are as follows.

. First-order fill-in. Fill-in is accepted only at locations in the global matrix
where the nodes belong to the same element.

. Second-order fill-in. Fill-in is accepted at locations for the first-order fill-in
and for locations in the global matrix corresponding to couplings to nodes
in adjacent elements which caused first-order fill-in.

. N-order fill-in. Fill-in is accepted at locations for the ðN 2 1Þ order fill-in
and for locations in the global matrix corresponding to couplings to nodes
in adjacent elements which caused ðN 2 1Þ order fill-in.

By applying the above-mentioned fill-in rules, the desired fill-in for the pressure
block diagonal submatrix will take place. Thus, if nodal numbering and
thereby also the Gaussian elimination order is chosen carefully, the zeros at the
pressure locations in the continuity equation will not introduce problems
during the incomplete elimination.

Figures 3-5 show the coupling between nodes for the node at the lower left
corner, the mid side node on the upper edge and the center node, respectively.
The fill-in will take place at the locations of the corresponding degrees of
freedom in the equation matrix. Full coupling with all nodes for the lower left
corner node appear for eighth-order fill-in (Figure 3). The mid side node at the
upper edge achieves full coupling for the sixth-order fill-in (Figure 4), while full
coupling for the center node occur for the fourth-order fill-in (Figure 5).

6. Numerical methods
To solve the non-linear Navier-Stokes finite element equation system (11) we
use Newton’s method, which is known to have a second-order convergence rate.

Defining,

unþ1
h ¼ un

h þ Du ð16Þ

pnþ1
h ¼ pn

h þ Dp ð17Þ

yields the following linear incremental system to be solved at each Newton step

HFF
14,3

330



a un
h;Duh; vh

� �
þ a Duh;u

n
h;vh

� �
þ b pn

h; vh

� �
¼ f ðvhÞ ;vh [ Uh ð18Þ

bðqh;DuhÞ ¼ b qh;u
n
h

� �
;qh [ Qh ð19Þ

The linear nonsymmetric set of equations is solved by the ILU preconditioned
Bi-CGStab algorithm (van der Vorst, 1992).

7. Numerical experiments
The influence of the fill-in order for the ILU preconditioner is explored for
driven cavity flow. We solved both Stokes and Navier-Stokes equations, to
investigate different fill-in orders for the symmetric and a nonsymmetric
system, respectively.

The storage of the equation matrix and the preconditioning matrix is
increasing with the order of fill-in. The limitation of the order of fill-in to be
explored is therefore related to the computer memory. The highest order of
fill-in explored with the available computer memory is the third-order fill-in.

Figure 3.
Coupling of the node at
the lower left corner for

different orders of fill-in.
The first figure to the

upper left has zero-order
fill-in. The last one has

eight-order fill-in
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Figure 4.
Coupling of the middle
node at the upper edge
for different orders of
fill-in. The first figure to
the upper left has
zero-order fill-in. The last
one has sixth-order fill-in

Figure 5.
Coupling of the center of
the mesh for different
orders of fill-in. The first
picture on the upper left
has zero-order fill-in. The
last one has four-order
fill-in
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The finite element meshes used in solving the Stokes equations are shown in
Figure 6 and the adapted meshes in solving the Navier-Stokes equations are
shown in Figure 7. The meshes are adapted to the solution by using the ratio of
convection to diffusion as refinement – recoarsening indicator (Wille, 1996).

The solutions of the Stokes equations are shown to the left and the solutions
of the Navier-Stokes equations are shown to the right in Figure 8.

Figure 6.
Meshes used in Stokes

simulations

Figure 7.
Meshes for the

simulations of the
Navier-Stokes equations

for the Reynolds number
200, 400, 600, 800, 1,000
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Figure 9 shows the amount of memory storage required by the first three
orders of fill-in in terms of megabytes in ILU preconditioning of the Stokes
equations. The first order fill-in needs much less memory storage than the
second- or third-order fill-in. The time for initialization of the different orders of
fill-in (Figure 10) is the factorization time for the equation matrix, which is
much less for first-order fill-in than the fill-in second- or third-order.

Figure 11 shows the number of iterations of the linear solver required to
achieve convergence as a function of the number of degrees of freedom for the
different orders of fill-in. The first-order fill-in requires more linear iterations

Figure 8.
Solutions of the Stokes
equations, velocity
vectors and isobars, to
the left and the solutions
of the Navier-Stokes
equations for Reynolds
number 500 to the right
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for convergence than the second- or third-order fill-in. However, as shown in
Figure 12, the first-order fill-in is much faster in terms of CPU time than the
second- or third-order fill-in.

The results of similar experiments with the Navier-Stokes equations are
shown in Figures 13-16. In the Navier-Stokes simulations, the results are given
as a function of Reynolds number. Figure 13 shows that first-order fill-in

Figure 9.
The memory storage for

the preconditioning
matrix as a function of

the number of degrees of
freedom for the Stokes

equations

Figure 10.
The factorization time of

preconditioning matrix
as a function of the

number of degrees of
freedom for the Stokes

equations
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requires less storage for the preconditioning matrix than the second- or
third-order fill-in. The factorization time (Figure 14) for the preconditioning
matrix is also much less for the first-order fill-in.

The number of degrees of freedom for the adapted meshes for solving the
Navier-Stokes equations, shown in Figure 7, are shown in Figure 17. Figures 15
and 16 show the number of linear iterations and the CPU time corresponding
to five Newton iterations of the linear solver. Figure 15 shows that the picture

Figure 11.
The number of linear
iterations for the iterative
solver as a function of
the number of degrees of
freedom for the Stokes
equations

Figure 12.
The total CPU time of
linear iteration as a
function of the number of
degrees of freedom for
the Stokes equations
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for the linear iterations is different for the nonlinear and nonsymmetric
Navier-Stokes equations compared to the linear and symmetric Stokes
equations. For the highest Reynolds numbers (Figure 15), the first-order fill-in
scheme requires fewer linear iterations than the higher order fill-in schemes.
Figure 16 also shows that the first-order fill-in is much faster than the second-
or third-order fill-in.

Figure 13.
The memory storage for

the preconditioning
matrix as a function of

the Reynolds number for
the Navier-Stokes

equations

Figure 14.
The factorization time

for the preconditioning
matrix as a function of

the Reynolds number for
the Navier-Stokes

equations
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8. Concluding remarks
A new fill-in rule for ILU preconditioning has been suggested for systems such
as those arising in primitive variable Navier-Stokes problems. This fill-in rule
is believed to be much more relevant to these equation systems than those
based on thresholding.

Different orders of fill-in have been compared for Stokes and Navier-Stokes
equations. The conclusion of this work is quite clear. The first-order fill-in

Figure 15.
The number of linear
iterations for the iterative
solver as a function of
the Reynolds number for
the Navier-Stokes
equations

Figure 16.
Time for the solution as a
function of the number of
degrees of freedom for
the Navier-Stokes
equations
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algorithm requires less storage and is faster and more robust than higher order
fill-in algorithms.
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